The K-modes algorithm for clustering

نویسندگان

  • Miguel Á. Carreira-Perpiñán
  • Weiran Wang
چکیده

Many clustering algorithms exist that estimate a cluster centroid, such as K-means, K-medoids or mean-shift, but no algorithm seems to exist that clusters data by returning exactly K meaningful modes. We propose a natural definition of a K-modes objective function by combining the notions of density and cluster assignment. The algorithm becomes K-means and K-medoids in the limit of very large and very small scales. Computationally, it is slightly slower than K-means but much faster than mean-shift or K-medoids. Unlike K-means, it is able to find centroids that are valid patterns, truly representative of a cluster, even with nonconvex clusters, and appears robust to outliers and misspecification of the scale and number of clusters. Given a dataset x1, . . . ,xN ∈ R , we consider clustering algorithms based on centroids, i.e., that estimate a representative ck ∈ R D of each cluster k in addition to assigning data points to clusters. Two of the most widely used algorithms of this type are K-means and mean-shift. K-means has the number of clusters K as a user parameter and tries to minimize the objective function

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

An Improved K-Means with Artificial Bee Colony Algorithm for Clustering Crimes

Crime detection is one of the major issues in the field of criminology. In fact, criminology includes knowing the details of a crime and its intangible relations with the offender. In spite of the enormous amount of data on offenses and offenders, and the complex and intangible semantic relationships between this information, criminology has become one of the most important areas in the field o...

متن کامل

A Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)

Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...

متن کامل

A cultural algorithm for data ‎clustering‎

Clustering is a widespread data analysis and data mining technique in many fields of study such as engineering, medicine, biology and the like. The aim of clustering is to collect data points. In this paper, a Cultural Algorithm (CA) is presented to optimize partition with N objects into K clusters. The CA is one of the effective methods for searching into the problem space in order to find a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.6478  شماره 

صفحات  -

تاریخ انتشار 2013